Tuesday, April 10, 2012

Energy-fixing reaction

The energy-fixing reaction of photosynthesis begins when light is absorbed in photosystem II in the thylakoid membranes. The energy of the sunlight, captured in the P680 reaction center, activates electrons to jump out of the chlorophyll molecules in the reaction center. These electrons pass through a series of cytochromes in the nearby electron-transport system.

After passing through the electron transport system, the energy-rich electrons eventually enter photosystem 1. Some of the energy of the electron is lost as the electron moves along the chain of acceptors, but a portion of the energy pumps protons across the thylakoid membrane, and this pumping sets up the potential for chemiosmosis.

The spent electrons from P680 enter the P700 reaction center in photosystem I. Sunlight now activates the electrons, which receive a second boost out of the chlorophyll molecules. There they reach a high energy level. Now the electrons progress through a second electron transport system, but this time there is no proton pumping. Rather, the energy reduces NADP. This reduction occurs as two electrons join NADP and energize the molecule. Because NADP acquires two negatively charged electrons, it attracts two positively charged protons to balance the charges. Consequently, the NADP molecule is reduced to NADPH, a molecule that contains much energy.

Because electrons have flowed out of the P680 reaction center, the chlorophyll molecules are left without a certain number of electrons. Electrons secured from water molecules replace these electrons. Each split water molecule releases two electrons that enter the chlorophyll molecules to replace those lost. The split water molecules also release two protons that enter the cytoplasm near the thylakoid and are available to increase the chemiosmotic gradient.

The third product of the disrupted water molecules is oxygen. Two oxygen atoms combine with one another to form molecular oxygen, which is given off as the byproduct of photosynthesis; it fills the atmosphere and is used by all oxygen-breathing organisms, including plant and animal cells.



ATP production in the energy-fixing reactions of photosynthesis occurs by the process of chemiosmosis. Essentially, this process consists of a rush of protons across a membrane (the thylakoid membrane, in this case), accompanied by the synthesis of ATP molecules. Biochemists have calculated that the proton concentration on one side of the thylakoid is 10,000 times that on the opposite side of the membrane.

In photosynthesis, the protons pass back across the membranes through channels lying alongside sites where enzymes are located. As the protons pass through the channels, the energy of the protons is released to form high-energy ATP bonds. ATP is formed in the energy-fixing reactions along with the NADPH formed in the main reactions. Both ATP and NADPH provide the energy necessary for the synthesis of carbohydrates that occurs in the second major set of events in photosynthesis.

1 comment:

VIDEO

 

SOURCES OF THIS BLOG

http://www.cliffsnotes.com/study_guide/Process-of-Photosynthesis.topicArticleId-8741,articleId-8599.html